CDF 9/7 Дискретное вейвлет-преобразование (свертка)
Я пытаюсь написать простую автономную программу, которая выполняет один уровень дискретного вейвлет-преобразования в одномерном списке, используя вейвлеты CDF 9/7, а затем реконструирует его. Я просто использую метод свертки / банка фильтров, чтобы понять, как он работает. Другими словами, сверните список с фильтром, чтобы получить коэффициенты масштабирования, сверните список с другим фильтром, чтобы получить коэффициенты вейвлета, но делайте это только начиная с каждого другого элемента. Затем увеличьте выборку (то есть добавьте нули между элементами), примените фильтры к коэффициентам вейвлета и масштаба, сложите их вместе и получите исходный список.
Я могу заставить это работать для вейвлет-фильтра Хаара, но когда я пытаюсь использовать фильтр CDF 9/7, он не выдает такой же ввод. Однако полученный список и исходный список суммируют одно и то же.
Я уверен, что это очень глупая ошибка в свертке, но я просто не могу понять это. Я пробовал несколько перестановок свертки, например, центрировал фильтр по индексу "i" вместо того, чтобы начинать его с левого края, но, похоже, ничего не сработало... Вероятно, это одна из тех ошибок, которые будут я бью себя по голове, когда я это понимаю.
Вот код:
import random
import math
length = 128
array = list()
row = list()
scaleCoefficients = list()
waveletCoefficients = list()
reconstruction = list()
def upsample(lst, index):
if (index % 2 == 0):
return 0.0
else:
return lst[index/2]
for i in range(length):
array.append(random.random())
## CDF 9/7 Wavelet (doesn't work?)
DWTAnalysisLowpass = [.026749, -.016864, -.078223, .266864, .602949, .266864, -.078223, -.016864, .026749]
for i in range(len(DWTAnalysisLowpass)):
DWTAnalysisLowpass[i] = math.sqrt(2.0) * DWTAnalysisLowpass[i]
DWTAnalysisHighpass = [0.0, .091272, -.057544, -0.591272, 1.115087, -.591272, -.057544, .091272, 0.0]
for i in range(len(DWTAnalysisHighpass)):
DWTAnalysisHighpass[i] = 1.0/math.sqrt(2.0) * DWTAnalysisHighpass[i]
DWTSynthesisLowpass = [0.0, -.091272, -.057544, 0.591272, 1.115087, .591272, -.057544, -.091272, 0.0]
for i in range(len(DWTSynthesisLowpass)):
DWTSynthesisLowpass[i] = 1.0/math.sqrt(2.0) * DWTSynthesisLowpass[i]
DWTSynthesisHighpass = [.026749, .016864, -.078223, -.266864, .602949, -.266864, -.078223, .016864, .026749]
for i in range(len(DWTSynthesisHighpass)):
DWTSynthesisHighpass[i] = math.sqrt(2.0) * DWTSynthesisHighpass[i]
## Haar Wavelet (Works)
## c = 1.0/math.sqrt(2)
## DWTAnalysisLowpass = [c,c]
## DWTAnalysisHighpass = [c, -c]
## DWTSynthesisLowpass = [c, c]
## DWTSynthesisHighpass = [-c, c]
## Do the forward transform - we only need to do it on half the elements
for i in range(0,length,2):
newVal = 0.0
## Convolve the next j elements
for j in range(len(DWTAnalysisLowpass)):
index = i + j
if(index >= length):
index = index - length
newVal = newVal + array[index]*DWTAnalysisLowpass[j]
scaleCoefficients.append(newVal)
newVal = 0.0
for j in range(len(DWTAnalysisHighpass)):
index = i + j
if(index >= length):
index = index - length
newVal = newVal + array[index]*DWTAnalysisHighpass[j]
waveletCoefficients.append(newVal)
## Do the inverse transform
for i in range(length):
newVal = 0.0
for j in range(len(DWTSynthesisHighpass)):
index = i + j
if(index >= length):
index = index - length
newVal = newVal + upsample(waveletCoefficients, index)*DWTSynthesisHighpass[j]
for j in range(len(DWTSynthesisLowpass)):
index = i + j
if(index >= length):
index = index - length
newVal = newVal + upsample(scaleCoefficients, index)*DWTSynthesisLowpass[j]
reconstruction.append(newVal)
print sum(reconstruction)
print sum(array)
print reconstruction
print array
Кстати, я взял значения фильтра из приложения здесь: http://www1.cs.columbia.edu/~rso2102/AWR/Files/Overbeck2009AWR.pdf, но я видел, как они использовались в связке примеров кода Matlab как Что ж.
1 ответ
На самом деле я решил это сам, сравнив коэффициенты, а затем реконструкцию с кодом из этой реализации подъема:
http://www.embl.de/~gpau/misc/dwt97.c
По сути, я: 1) Сделал граничные условия симметричными, а не периодическими. 2) Пришлось компенсировать свертки (и повышающую дискретизацию) определенными способами, чтобы все выровнялось.
Вот код на случай, если кто-нибудь еще столкнется с проблемой. Я чувствую, что это все еще слишком усложняет, особенно потому, что это нигде не задокументировано, но, по крайней мере, работает. Это также включает в себя "переключатель", который я использовал для проверки этой ссылки, и мне пришлось изменить вейвлет Хаара, чтобы он работал.
import random
import math
length = int()
array = list()
row = list()
scaleCoefficients = list()
waveletCoefficients = list()
reconstruction = list()
switch = False
def upsample1(lst, index):
if (index % 2 == 0):
return lst[index/2]
else:
return 0.0
def upsample2(lst, index):
if (index % 2 == 0):
return 0.0
else:
return lst[index/2]
## Generate a random list of floating point numbers
if (not switch):
length = 128
for i in range(length):
array.append(random.random())
else:
length = 32
for i in range(32):
array.append(5.0+i+.4*i*i-.02*i*i*i)
## First Part Just Calculates the Filters
## CDF 9/7 Wavelet
DWTAnalysisLowpass = [.026749, -.016864, -.078223, .266864, .602949, .266864, -.078223, -.016864, .026749]
for i in range(len(DWTAnalysisLowpass)):
DWTAnalysisLowpass[i] = math.sqrt(2.0) * DWTAnalysisLowpass[i]
DWTAnalysisHighpass = [.091272, -.057544, -0.591272, 1.115087, -.591272, -.057544, .091272]
for i in range(len(DWTAnalysisHighpass)):
DWTAnalysisHighpass[i] = DWTAnalysisHighpass[i]/math.sqrt(2.0)
DWTSynthesisLowpass = [-.091272, -.057544, 0.591272, 1.115087, .591272, -.057544, -.091272]
for i in range(len(DWTSynthesisLowpass)):
DWTSynthesisLowpass[i] = DWTSynthesisLowpass[i]/math.sqrt(2.0)
DWTSynthesisHighpass = [.026749, .016864, -.078223, -.266864, .602949, -.266864, -.078223, .016864, .026749]
for i in range(len(DWTSynthesisHighpass)):
DWTSynthesisHighpass[i] = math.sqrt(2.0) * DWTSynthesisHighpass[i]
## Haar Wavelet
## c = 1.0/math.sqrt(2)
## DWTAnalysisLowpass = [c,c]
## DWTAnalysisHighpass = [c, -c]
## DWTSynthesisLowpass = [-c, c]
## DWTSynthesisHighpass = [c, c]
# Do the forward transform. We can skip every other sample since they would
# be removed in the downsampling anyway
for i in range(0,length,2):
newVal = 0.0
## Convolve the next j elements by the low-pass analysis filter
for j in range(len(DWTAnalysisLowpass)):
index = i + j - len(DWTAnalysisLowpass)/2
if(index >= length):
index = 2*length - index - 2
elif (index < 0):
index = -index
newVal = newVal + array[index]*DWTAnalysisLowpass[j]
# append the new value to the list of scale coefficients
scaleCoefficients.append(newVal)
newVal = 0.0
# Convolve the next j elements by the high-pass analysis filter
for j in range(len(DWTAnalysisHighpass)):
index = i + j - len(DWTAnalysisHighpass)/2 + 1
if(index >= length):
index = 2*length - index - 2
elif (index < 0):
index = -index
newVal = newVal + array[index]*DWTAnalysisHighpass[j]
# append the new value to the list of wavelet coefficients
waveletCoefficients.append(newVal)
# Do the inverse transform
for i in range(length):
newVal = 0.0
# convolve the upsampled wavelet coefficients with the high-pass synthesis filter
for j in range(len(DWTSynthesisHighpass)):
index = i + j - len(DWTSynthesisHighpass)/2
if(index >= length):
index = 2*length - index - 2
elif (index < 0):
index = -index
newVal = newVal + upsample2(waveletCoefficients, index)*DWTSynthesisHighpass[j]
# convolve the upsampled scale coefficients with the low-pass synthesis filter, and
# add it to the previous convolution
for j in range(len(DWTSynthesisLowpass)):
index = i + j - len(DWTSynthesisLowpass)/2
if(index >= length):
index = 2*length - index - 2
elif (index < 0):
index = -index
newVal = newVal + upsample1(scaleCoefficients, index)*DWTSynthesisLowpass[j]
reconstruction.append(newVal)
print ("Sums: ")
print sum(reconstruction)
print sum(array)
print ("Original Signal: ")
print array
if (not switch):
print ("Wavelet Coefficients: ")
for i in range(len(scaleCoefficients)):
print ("sc[" + str(i) + "]: " + str(scaleCoefficients[i]))
for i in range(len(waveletCoefficients)):
print ("wc[" + str(i) + "]: " + str(waveletCoefficients[i]))
print ("Reconstruction: ")
print reconstruction