Как вы вращаете двумерный массив?
Вдохновленный постом Рэймонда Чена, скажем, у вас есть двумерный массив 4x4, напишите функцию, которая поворачивает его на 90 градусов. Раймонд ссылается на решение в псевдокоде, но я хотел бы увидеть некоторые реальные вещи.
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
становится:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
Обновление: ответ Ника самый простой, но есть ли способ сделать это лучше, чем n^2? Что делать, если матрица была 10000x10000?
64 ответа
Вот моя попытка поворота матрицы на 90 градусов, которая является двухшаговым решением в C. Сначала переставьте матрицу на месте, а затем поменяйте местами столбцы.
#define ROWS 5
#define COLS 5
void print_matrix_b(int B[][COLS], int rows, int cols)
{
for (int i = 0; i <= rows; i++) {
for (int j = 0; j <=cols; j++) {
printf("%d ", B[i][j]);
}
printf("\n");
}
}
void swap_columns(int B[][COLS], int l, int r, int rows)
{
int tmp;
for (int i = 0; i <= rows; i++) {
tmp = B[i][l];
B[i][l] = B[i][r];
B[i][r] = tmp;
}
}
void matrix_2d_rotation(int B[][COLS], int rows, int cols)
{
int tmp;
// Transpose the matrix first
for (int i = 0; i <= rows; i++) {
for (int j = i; j <=cols; j++) {
tmp = B[i][j];
B[i][j] = B[j][i];
B[j][i] = tmp;
}
}
// Swap the first and last col and continue until
// the middle.
for (int i = 0; i < (cols / 2); i++)
swap_columns(B, i, cols - i, rows);
}
int _tmain(int argc, _TCHAR* argv[])
{
int B[ROWS][COLS] = {
{1, 2, 3, 4, 5},
{6, 7, 8, 9, 10},
{11, 12, 13, 14, 15},
{16, 17, 18, 19, 20},
{21, 22, 23, 24, 25}
};
matrix_2d_rotation(B, ROWS - 1, COLS - 1);
print_matrix_b(B, ROWS - 1, COLS -1);
return 0;
}
private static int[][] rotate(int[][] matrix, int n) {
int[][] rotated = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
rotated[i][j] = matrix[n-j-1][i];
}
}
return rotated;
}
Решение Javascript для матрицы NxN с временем выполнения O(N^2) и памятью O(1)
function rotate90(matrix){
var length = matrix.length
for(var row = 0; row < (length / 2); row++){
for(var col = row; col < ( length - 1 - row); col++){
var tmpVal = matrix[row][col];
for(var i = 0; i < 4; i++){
var rowSwap = col;
var colSwap = (length - 1) - row;
var poppedVal = matrix[rowSwap][colSwap];
matrix[rowSwap][colSwap] = tmpVal;
tmpVal = poppedVal;
col = colSwap;
row = rowSwap;
}
}
}
}
C-код для транспонирования и поворота матрицы (+/-90, +/-180)
- Поддерживает квадратные и неквадратные матрицы, имеет встроенные функции и функции копирования
- Поддерживает 2D-массивы и 1D-указатели с логическими строками / столбцами
- Юнит-тесты; см тесты для примеров использования
- проверено gcc -std=c90 -стена -педантика, MSVC17
`
#include <stdlib.h>
#include <memory.h>
#include <assert.h>
/*
Matrix transpose & rotate (+/-90, +/-180)
Supports both 2D arrays and 1D pointers with logical rows/cols
Supports square and non-square matrices, has in-place and copy features
See tests for examples of usage
tested gcc -std=c90 -Wall -pedantic, MSVC17
*/
typedef int matrix_data_t; /* matrix data type */
void transpose(const matrix_data_t* src, matrix_data_t* dst, int rows, int cols);
void transpose_inplace(matrix_data_t* data, int n );
void rotate(int direction, const matrix_data_t* src, matrix_data_t* dst, int rows, int cols);
void rotate_inplace(int direction, matrix_data_t* data, int n);
void reverse_rows(matrix_data_t* data, int rows, int cols);
void reverse_cols(matrix_data_t* data, int rows, int cols);
/* test/compare fn */
int test_cmp(const matrix_data_t* lhs, const matrix_data_t* rhs, int rows, int cols );
/* TESTS/USAGE */
void transpose_test() {
matrix_data_t sq3x3[9] = { 0,1,2,3,4,5,6,7,8 };/* 3x3 square, odd length side */
matrix_data_t sq3x3_cpy[9];
matrix_data_t sq3x3_2D[3][3] = { { 0,1,2 },{ 3,4,5 },{ 6,7,8 } };/* 2D 3x3 square */
matrix_data_t sq3x3_2D_copy[3][3];
/* expected test values */
const matrix_data_t sq3x3_orig[9] = { 0,1,2,3,4,5,6,7,8 };
const matrix_data_t sq3x3_transposed[9] = { 0,3,6,1,4,7,2,5,8};
matrix_data_t sq4x4[16]= { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 };/* 4x4 square, even length*/
const matrix_data_t sq4x4_orig[16] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 };
const matrix_data_t sq4x4_transposed[16] = { 0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15 };
/* 2x3 rectangle */
const matrix_data_t r2x3_orig[6] = { 0,1,2,3,4,5 };
const matrix_data_t r2x3_transposed[6] = { 0,3,1,4,2,5 };
matrix_data_t r2x3_copy[6];
matrix_data_t r2x3_2D[2][3] = { {0,1,2},{3,4,5} }; /* 2x3 2D rectangle */
matrix_data_t r2x3_2D_t[3][2];
/* matrix_data_t r3x2[6] = { 0,1,2,3,4,5 }; */
matrix_data_t r3x2_copy[6];
/* 3x2 rectangle */
const matrix_data_t r3x2_orig[6] = { 0,1,2,3,4,5 };
const matrix_data_t r3x2_transposed[6] = { 0,2,4,1,3,5 };
matrix_data_t r6x1[6] = { 0,1,2,3,4,5 }; /* 6x1 */
matrix_data_t r6x1_copy[6];
matrix_data_t r1x1[1] = { 0 }; /*1x1*/
matrix_data_t r1x1_copy[1];
/* 3x3 tests, 2D array tests */
transpose_inplace(sq3x3, 3); /* transpose in place */
assert(!test_cmp(sq3x3, sq3x3_transposed, 3, 3));
transpose_inplace(sq3x3, 3); /* transpose again */
assert(!test_cmp(sq3x3, sq3x3_orig, 3, 3));
transpose(sq3x3, sq3x3_cpy, 3, 3); /* transpose copy 3x3*/
assert(!test_cmp(sq3x3_cpy, sq3x3_transposed, 3, 3));
transpose((matrix_data_t*)sq3x3_2D, (matrix_data_t*)sq3x3_2D_copy, 3, 3); /* 2D array transpose/copy */
assert(!test_cmp((matrix_data_t*)sq3x3_2D_copy, sq3x3_transposed, 3, 3));
transpose_inplace((matrix_data_t*)sq3x3_2D_copy, 3); /* 2D array transpose in place */
assert(!test_cmp((matrix_data_t*)sq3x3_2D_copy, sq3x3_orig, 3, 3));
/* 4x4 tests */
transpose_inplace(sq4x4, 4); /* transpose in place */
assert(!test_cmp(sq4x4, sq4x4_transposed, 4,4));
transpose_inplace(sq4x4, 4); /* transpose again */
assert(!test_cmp(sq4x4, sq4x4_orig, 3, 3));
/* 2x3,3x2 tests */
transpose(r2x3_orig, r2x3_copy, 2, 3);
assert(!test_cmp(r2x3_copy, r2x3_transposed, 3, 2));
transpose(r3x2_orig, r3x2_copy, 3, 2);
assert(!test_cmp(r3x2_copy, r3x2_transposed, 2,3));
/* 2D array */
transpose((matrix_data_t*)r2x3_2D, (matrix_data_t*)r2x3_2D_t, 2, 3);
assert(!test_cmp((matrix_data_t*)r2x3_2D_t, r2x3_transposed, 3,2));
/* Nx1 test, 1x1 test */
transpose(r6x1, r6x1_copy, 6, 1);
assert(!test_cmp(r6x1_copy, r6x1, 1, 6));
transpose(r1x1, r1x1_copy, 1, 1);
assert(!test_cmp(r1x1_copy, r1x1, 1, 1));
}
void rotate_test() {
/* 3x3 square */
const matrix_data_t sq3x3[9] = { 0,1,2,3,4,5,6,7,8 };
const matrix_data_t sq3x3_r90[9] = { 6,3,0,7,4,1,8,5,2 };
const matrix_data_t sq3x3_180[9] = { 8,7,6,5,4,3,2,1,0 };
const matrix_data_t sq3x3_l90[9] = { 2,5,8,1,4,7,0,3,6 };
matrix_data_t sq3x3_copy[9];
/* 3x3 square, 2D */
matrix_data_t sq3x3_2D[3][3] = { { 0,1,2 },{ 3,4,5 },{ 6,7,8 } };
/* 4x4, 2D */
matrix_data_t sq4x4[4][4] = { { 0,1,2,3 },{ 4,5,6,7 },{ 8,9,10,11 },{ 12,13,14,15 } };
matrix_data_t sq4x4_copy[4][4];
const matrix_data_t sq4x4_r90[16] = { 12,8,4,0,13,9,5,1,14,10,6,2,15,11,7,3 };
const matrix_data_t sq4x4_l90[16] = { 3,7,11,15,2,6,10,14,1,5,9,13,0,4,8,12 };
const matrix_data_t sq4x4_180[16] = { 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 };
matrix_data_t r6[6] = { 0,1,2,3,4,5 }; /* rectangle with area of 6 (1x6,2x3,3x2, or 6x1) */
matrix_data_t r6_copy[6];
const matrix_data_t r1x6_r90[6] = { 0,1,2,3,4,5 };
const matrix_data_t r1x6_l90[6] = { 5,4,3,2,1,0 };
const matrix_data_t r1x6_180[6] = { 5,4,3,2,1,0 };
const matrix_data_t r2x3_r90[6] = { 3,0,4,1,5,2 };
const matrix_data_t r2x3_l90[6] = { 2,5,1,4,0,3 };
const matrix_data_t r2x3_180[6] = { 5,4,3,2,1,0 };
const matrix_data_t r3x2_r90[6] = { 4,2,0,5,3,1 };
const matrix_data_t r3x2_l90[6] = { 1,3,5,0,2,4 };
const matrix_data_t r3x2_180[6] = { 5,4,3,2,1,0 };
const matrix_data_t r6x1_r90[6] = { 5,4,3,2,1,0 };
const matrix_data_t r6x1_l90[6] = { 0,1,2,3,4,5 };
const matrix_data_t r6x1_180[6] = { 5,4,3,2,1,0 };
/* sq3x3 tests */
rotate(90, sq3x3, sq3x3_copy, 3, 3); /* +90 */
assert(!test_cmp(sq3x3_copy, sq3x3_r90, 3, 3));
rotate(-90, sq3x3, sq3x3_copy, 3, 3); /* -90 */
assert(!test_cmp(sq3x3_copy, sq3x3_l90, 3, 3));
rotate(180, sq3x3, sq3x3_copy, 3, 3); /* 180 */
assert(!test_cmp(sq3x3_copy, sq3x3_180, 3, 3));
/* sq3x3 in-place rotations */
memcpy( sq3x3_copy, sq3x3, 3 * 3 * sizeof(matrix_data_t));
rotate_inplace(90, sq3x3_copy, 3);
assert(!test_cmp(sq3x3_copy, sq3x3_r90, 3, 3));
rotate_inplace(-90, sq3x3_copy, 3);
assert(!test_cmp(sq3x3_copy, sq3x3, 3, 3)); /* back to 0 orientation */
rotate_inplace(180, sq3x3_copy, 3);
assert(!test_cmp(sq3x3_copy, sq3x3_180, 3, 3));
rotate_inplace(-180, sq3x3_copy, 3);
assert(!test_cmp(sq3x3_copy, sq3x3, 3, 3));
rotate_inplace(180, (matrix_data_t*)sq3x3_2D, 3);/* 2D test */
assert(!test_cmp((matrix_data_t*)sq3x3_2D, sq3x3_180, 3, 3));
/* sq4x4 */
rotate(90, (matrix_data_t*)sq4x4, (matrix_data_t*)sq4x4_copy, 4, 4);
assert(!test_cmp((matrix_data_t*)sq4x4_copy, sq4x4_r90, 4, 4));
rotate(-90, (matrix_data_t*)sq4x4, (matrix_data_t*)sq4x4_copy, 4, 4);
assert(!test_cmp((matrix_data_t*)sq4x4_copy, sq4x4_l90, 4, 4));
rotate(180, (matrix_data_t*)sq4x4, (matrix_data_t*)sq4x4_copy, 4, 4);
assert(!test_cmp((matrix_data_t*)sq4x4_copy, sq4x4_180, 4, 4));
/* r6 as 1x6 */
rotate(90, r6, r6_copy, 1, 6);
assert(!test_cmp(r6_copy, r1x6_r90, 1, 6));
rotate(-90, r6, r6_copy, 1, 6);
assert(!test_cmp(r6_copy, r1x6_l90, 1, 6));
rotate(180, r6, r6_copy, 1, 6);
assert(!test_cmp(r6_copy, r1x6_180, 1, 6));
/* r6 as 2x3 */
rotate(90, r6, r6_copy, 2, 3);
assert(!test_cmp(r6_copy, r2x3_r90, 2, 3));
rotate(-90, r6, r6_copy, 2, 3);
assert(!test_cmp(r6_copy, r2x3_l90, 2, 3));
rotate(180, r6, r6_copy, 2, 3);
assert(!test_cmp(r6_copy, r2x3_180, 2, 3));
/* r6 as 3x2 */
rotate(90, r6, r6_copy, 3, 2);
assert(!test_cmp(r6_copy, r3x2_r90, 3, 2));
rotate(-90, r6, r6_copy, 3, 2);
assert(!test_cmp(r6_copy, r3x2_l90, 3, 2));
rotate(180, r6, r6_copy, 3, 2);
assert(!test_cmp(r6_copy, r3x2_180, 3, 2));
/* r6 as 6x1 */
rotate(90, r6, r6_copy, 6, 1);
assert(!test_cmp(r6_copy, r6x1_r90, 6, 1));
rotate(-90, r6, r6_copy, 6, 1);
assert(!test_cmp(r6_copy, r6x1_l90, 6, 1));
rotate(180, r6, r6_copy, 6, 1);
assert(!test_cmp(r6_copy, r6x1_180, 6, 1));
}
/* test comparison fn, return 0 on match else non zero */
int test_cmp(const matrix_data_t* lhs, const matrix_data_t* rhs, int rows, int cols) {
int r, c;
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
if ((lhs + r * cols)[c] != (rhs + r * cols)[c])
return -1;
}
}
return 0;
}
/*
Reverse values in place of each row in 2D matrix data[rows][cols] or in 1D pointer with logical rows/cols
[A B C] -> [C B A]
[D E F] [F E D]
*/
void reverse_rows(matrix_data_t* data, int rows, int cols) {
int r, c;
matrix_data_t temp;
matrix_data_t* pRow = NULL;
for (r = 0; r < rows; ++r) {
pRow = (data + r * cols);
for (c = 0; c < (int)(cols / 2); ++c) { /* explicit truncate */
temp = pRow[c];
pRow[c] = pRow[cols - 1 - c];
pRow[cols - 1 - c] = temp;
}
}
}
/*
Reverse values in place of each column in 2D matrix data[rows][cols] or in 1D pointer with logical rows/cols
[A B C] -> [D E F]
[D E F] [A B C]
*/
void reverse_cols(matrix_data_t* data, int rows, int cols) {
int r, c;
matrix_data_t temp;
matrix_data_t* pRowA = NULL;
matrix_data_t* pRowB = NULL;
for (c = 0; c < cols; ++c) {
for (r = 0; r < (int)(rows / 2); ++r) { /* explicit truncate */
pRowA = data + r * cols;
pRowB = data + cols * (rows - 1 - r);
temp = pRowA[c];
pRowA[c] = pRowB[c];
pRowB[c] = temp;
}
}
}
/* Transpose NxM matrix to MxN matrix in O(n) time */
void transpose(const matrix_data_t* src, matrix_data_t* dst, int N, int M) {
int i;
for (i = 0; i<N*M; ++i) dst[(i%M)*N + (i / M)] = src[i]; /* one-liner version */
/*
expanded version of one-liner: calculate XY based on array index, then convert that to YX array index
int i,j,x,y;
for (i = 0; i < N*M; ++i) {
x = i % M;
y = (int)(i / M);
j = x * N + y;
dst[j] = src[i];
}
*/
/*
nested for loop version
using ptr arithmetic to get proper row/column
this is really just dst[col][row]=src[row][col]
int r, c;
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
(dst + c * rows)[r] = (src + r * cols)[c];
}
}
*/
}
/*
Transpose NxN matrix in place
*/
void transpose_inplace(matrix_data_t* data, int N ) {
int r, c;
matrix_data_t temp;
for (r = 0; r < N; ++r) {
for (c = r; c < N; ++c) { /*start at column=row*/
/* using ptr arithmetic to get proper row/column */
/* this is really just
temp=dst[col][row];
dst[col][row]=src[row][col];
src[row][col]=temp;
*/
temp = (data + c * N)[r];
(data + c * N)[r] = (data + r * N)[c];
(data + r * N)[c] = temp;
}
}
}
/*
Rotate 1D or 2D src matrix to dst matrix in a direction (90,180,-90)
Precondition: src and dst are 2d matrices with dimensions src[rows][cols] and dst[cols][rows] or 1D pointers with logical rows/cols
*/
void rotate(int direction, const matrix_data_t* src, matrix_data_t* dst, int rows, int cols) {
switch (direction) {
case -90:
transpose(src, dst, rows, cols);
reverse_cols(dst, cols, rows);
break;
case 90:
transpose(src, dst, rows, cols);
reverse_rows(dst, cols, rows);
break;
case 180:
case -180:
/* bit copy to dst, use in-place reversals */
memcpy(dst, src, rows*cols*sizeof(matrix_data_t));
reverse_cols(dst, cols, rows);
reverse_rows(dst, cols, rows);
break;
}
}
/*
Rotate array in a direction.
Array must be NxN 2D or 1D array with logical rows/cols
Direction can be (90,180,-90,-180)
*/
void rotate_inplace( int direction, matrix_data_t* data, int n) {
switch (direction) {
case -90:
transpose_inplace(data, n);
reverse_cols(data, n, n);
break;
case 90:
transpose_inplace(data, n);
reverse_rows(data, n, n);
break;
case 180:
case -180:
reverse_cols(data, n, n);
reverse_rows(data, n, n);
break;
}
}
`
#transpose является стандартным методом класса Array в Ruby, таким образом:
% irb
irb(main):001:0> m = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]]
=> [[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]]
irb(main):002:0> m.reverse.transpose
=> [[3, 9, 5, 1], [4, 0, 6, 2], [5, 1, 7, 3], [6, 2, 8, 4]]
Реализация представляет собой функцию транспонирования n^2, написанную на C. Вы можете увидеть ее здесь: http://www.ruby-doc.org/core-1.9.3/Array.html, выбрав "click" переключить источник "рядом с" транспонировать ".
Я помню лучше, чем O(n^2) решения, но только для специально построенных матриц (таких как разреженные матрицы)
short normal[4][4] = {{8,4,7,5},{3,4,5,7},{9,5,5,6},{3,3,3,3}};
short rotated[4][4];
for (int r = 0; r < 4; ++r)
{
for (int c = 0; c < 4; ++c)
{
rotated[r][c] = normal[c][3-r];
}
}
Простой метод C++, хотя в большом массиве будет большой объем памяти.
Вот моя реализация на месте в C
void rotateRight(int matrix[][SIZE], int length) {
int layer = 0;
for (int layer = 0; layer < length / 2; ++layer) {
int first = layer;
int last = length - 1 - layer;
for (int i = first; i < last; ++i) {
int topline = matrix[first][i];
int rightcol = matrix[i][last];
int bottomline = matrix[last][length - layer - 1 - i];
int leftcol = matrix[length - layer - 1 - i][first];
matrix[first][i] = leftcol;
matrix[i][last] = topline;
matrix[last][length - layer - 1 - i] = rightcol;
matrix[length - layer - 1 - i][first] = bottomline;
}
}
}
На основе алгоритма сообщества wiki и этого SO-ответа для транспонирования массивов приведена версия Swift 4 для поворота некоторого 2D-массива на 90 градусов против часовой стрелки. Это предполагает matrix
2D массив:
func rotate(matrix: [[Int]]) -> [[Int]] {
let transposedPoints = transpose(input: matrix)
let rotatedPoints = transposedPoints.map{ Array($0.reversed()) }
return rotatedPoints
}
fileprivate func transpose<T>(input: [[T]]) -> [[T]] {
if input.isEmpty { return [[T]]() }
let count = input[0].count
var out = [[T]](repeating: [T](), count: count)
for outer in input {
for (index, inner) in outer.enumerated() {
out[index].append(inner)
}
}
return out
}
Вот решение Javascript:
const transpose = m => m[0].map((x,i) => m.map(x => x[i]));
a: // original matrix
123
456
789
transpose(a).reverse(); // rotate 90 degrees counter clockwise
369
258
147
transpose(a.slice().reverse()); // rotate 90 degrees clockwise
741
852
963
transpose(transpose(a.slice().reverse()).slice().reverse())
// rotate 180 degrees
987
654
321
Моя версия ротации:
void rotate_matrix(int *matrix, int size)
{
int result[size*size];
for (int i = 0; i < size; ++i)
for (int j = 0; j < size; ++j)
result[(size - 1 - i) + j*size] = matrix[i*size+j];
for (int i = 0; i < size*size; ++i)
matrix[i] = result[i];
}
В нем мы меняем последний столбец на первый ряд и так далее. Это может быть не оптимально, но понятно для понимания.
В Eigen (C++):
Eigen::Matrix2d mat;
mat << 1, 2,
3, 4;
std::cout << mat << "\n\n";
Eigen::Matrix2d r_plus_90 = mat.transpose().rowwise().reverse();
std::cout << r_plus_90 << "\n\n";
Eigen::Matrix2d r_minus_90 = mat.transpose().colwise().reverse();
std::cout << r_minus_90 << "\n\n";
Eigen::Matrix2d r_180 = mat.colwise().reverse().rowwise().reverse(); // +180 same as -180
std::cout << r_180 << "\n\n";
Выход:
1 2
3 4
3 1
4 2
2 4
1 3
4 3
2 1
Основываясь на множестве других ответов, я придумал это в C#:
/// <param name="rotation">The number of rotations (if negative, the <see cref="Matrix{TValue}"/> is rotated counterclockwise;
/// otherwise, it's rotated clockwise). A single (positive) rotation is equivalent to 90° or -270°; a single (negative) rotation is
/// equivalent to -90° or 270°. Matrices may be rotated by 90°, 180°, or 270° only (or multiples thereof).</param>
/// <returns></returns>
public Matrix<TValue> Rotate(int rotation)
{
var result = default(Matrix<TValue>);
//This normalizes the requested rotation (for instance, if 10 is specified, the rotation is actually just +-2 or +-180°, but all
//correspond to the same rotation).
var d = rotation.ToDouble() / 4d;
d = d - (int)d;
var degree = (d - 1d) * 4d;
//This gets the type of rotation to make; there are a total of four unique rotations possible (0°, 90°, 180°, and 270°).
//Each correspond to 0, 1, 2, and 3, respectively (or 0, -1, -2, and -3, if in the other direction). Since
//1 is equivalent to -3 and so forth, we combine both cases into one.
switch (degree)
{
case -3:
case +1:
degree = 3;
break;
case -2:
case +2:
degree = 2;
break;
case -1:
case +3:
degree = 1;
break;
case -4:
case 0:
case +4:
degree = 0;
break;
}
switch (degree)
{
//The rotation is 0, +-180°
case 0:
case 2:
result = new TValue[Rows, Columns];
break;
//The rotation is +-90°
case 1:
case 3:
result = new TValue[Columns, Rows];
break;
}
for (uint i = 0; i < Columns; ++i)
{
for (uint j = 0; j < Rows; ++j)
{
switch (degree)
{
//If rotation is 0°
case 0:
result._values[j][i] = _values[j][i];
break;
//If rotation is -90°
case 1:
//Transpose, then reverse each column OR reverse each row, then transpose
result._values[i][j] = _values[j][Columns - i - 1];
break;
//If rotation is +-180°
case 2:
//Reverse each column, then reverse each row
result._values[(Rows - 1) - j][(Columns - 1) - i] = _values[j][i];
break;
//If rotation is +90°
case 3:
//Transpose, then reverse each row
result._values[i][j] = _values[Rows - j - 1][i];
break;
}
}
}
return result;
}
куда _values
соответствует частному двумерному массиву, определенному Matrix<TValue>
(в виде [][]
). result = new TValue[Columns, Rows]
возможно через неявную перегрузку оператора и преобразует двумерный массив в Matrix<TValue>
, Два свойства Columns
а также Rows
являются открытыми свойствами, которые получают количество столбцов и строк текущего экземпляра:
public uint Columns
=> (uint)_values[0].Length;
public uint Rows
=> (uint)_values.Length;
Предполагая, конечно, что вы предпочитаете работать с беззнаковыми индексами;-)
Все это позволяет вам указать, сколько раз его следует повернуть и нужно ли поворачивать влево (если меньше нуля) или вправо (если больше нуля). Вы можете улучшить это, чтобы проверить вращение в фактических градусах, но затем вы захотите вызвать исключение, если значение не кратно 90. С этим входом вы можете изменить метод соответствующим образом:
public Matrix<TValue> Rotate(int rotation)
{
var _rotation = (double)rotation / 90d;
if (_rotation - Math.Floor(_rotation) > 0)
{
throw new NotSupportedException("A matrix may only be rotated by multiples of 90.").
}
rotation = (int)_rotation;
...
}
Поскольку степень более точно выражается double
чем int
, но матрица может вращаться только кратно 90, гораздо более интуитивно понятно, чтобы аргумент соответствовал чему-то еще, что может быть точно представлено используемой структурой данных. int
идеально, потому что он может сказать вам, сколько раз повернуть его до определенной единицы (90), а также направление. double
вполне может быть в состоянии сказать вам и это, но он также включает значения, которые не поддерживаются этой операцией (которая по своей сути нелогична).
#include <iostream>
#include <iomanip>
using namespace std;
const int SIZE=3;
void print(int a[][SIZE],int);
void rotate(int a[][SIZE],int);
void main()
{
int a[SIZE][SIZE]={{11,22,33},{44,55,66},{77,88,99}};
cout<<"the array befor rotate\n";
print(a,SIZE);
rotate( a,SIZE);
cout<<"the array after rotate\n";
print(a,SIZE);
cout<<endl;
}
void print(int a[][SIZE],int SIZE)
{
int i,j;
for(i=0;i<SIZE;i++)
for(j=0;j<SIZE;j++)
cout<<a[i][j]<<setw(4);
}
void rotate(int a[][SIZE],int SIZE)
{
int temp[3][3],i,j;
for(i=0;i<SIZE;i++)
for(j=0;j<SIZE/2.5;j++)
{
temp[i][j]= a[i][j];
a[i][j]= a[j][SIZE-i-1] ;
a[j][SIZE-i-1] =temp[i][j];
}
}
Все текущие решения имеют O(n^2) в качестве служебного пространства (это исключает тех грязных мошенников ООП!). Вот решение с использованием O(1) памяти, поворачивая матрицу на 90 градусов вправо. Удлинитель винта, эта присоска работает быстро!
#include <algorithm>
#include <cstddef>
// Rotates an NxN matrix of type T 90 degrees to the right.
template <typename T, size_t N>
void rotate_matrix(T (&matrix)[N][N])
{
for(size_t i = 0; i < N; ++i)
for(size_t j = 0; j <= (N-i); ++j)
std::swap(matrix[i][j], matrix[j][i]);
}
ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: Я на самом деле не проверял это. Давайте играть в бах!
Я смог сделать это с помощью одного цикла. Временная сложность выглядит как O(K), где K - все элементы массива. Вот как я сделал это в JavaScript:
Во-первых, мы представляем матрицу n^2 одним массивом. Затем повторите его следующим образом:
/**
* Rotates matrix 90 degrees clockwise
* @param arr: the source array
* @param n: the array side (array is square n^2)
*/
function rotate (arr, n) {
var rotated = [], indexes = []
for (var i = 0; i < arr.length; i++) {
if (i < n)
indexes[i] = i * n + (n - 1)
else
indexes[i] = indexes[i - n] - 1
rotated[indexes[i]] = arr[i]
}
return rotated
}
По сути, мы преобразуем индексы исходного массива:
[0,1,2,3,4,5,6,7,8]
=> [2,5,8,1,4,7,0,3,6]
Затем, используя это преобразованное indexes
массив, мы помещаем фактические значения в последний rotated
массив.
Вот несколько тестов:
//n=3
rotate([
1, 2, 3,
4, 5, 6,
7, 8, 9], 3))
//result:
[7, 4, 1,
8, 5, 2,
9, 6, 3]
//n=4
rotate([
1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16], 4))
//result:
[13, 9, 5, 1,
14, 10, 6, 2,
15, 11, 7, 3,
16, 12, 8, 4]
//n=5
rotate([
1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11, 12, 13, 14, 15,
16, 17, 18, 19, 20,
21, 22, 23, 24, 25], 5))
//result:
[21, 16, 11, 6, 1,
22, 17, 12, 7, 2,
23, 18, 13, 8, 3,
24, 19, 14, 9, 4,
25, 20, 15, 10, 5]
Вот рекурсивный способ PHP:
$m = array();
$m[0] = array('a', 'b', 'c');
$m[1] = array('d', 'e', 'f');
$m[2] = array('g', 'h', 'i');
$newMatrix = array();
function rotateMatrix($m, $i = 0, &$newMatrix)
{
foreach ($m as $chunk) {
$newChunk[] = $chunk[$i];
}
$newMatrix[] = array_reverse($newChunk);
$i++;
if ($i < count($m)) {
rotateMatrix($m, $i, $newMatrix);
}
}
rotateMatrix($m, 0, $newMatrix);
echo '<pre>';
var_dump($newMatrix);
echo '<pre>';
Это решение не заботится о квадрате или прямоугольнике, вы можете вращать 4х5 или 5х4 или даже 4х4, его размер тоже не волнует. Обратите внимание, что эта реализация создает новый массив каждый раз, когда вы вызываете метод rotate90, она вообще не изменяет исходный массив.
public static void main(String[] args) {
int[][] a = new int[][] {
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 0, 1, 2 },
{ 3, 4, 5, 6 },
{ 7, 8, 9, 0 }
};
int[][] rotate180 = rotate90(rotate90(a));
print(rotate180);
}
static int[][] rotate90(int[][] a) {
int[][] ret = new int[a[0].length][a.length];
for (int i = 0; i < a.length; i++) {
for (int j = 0; j < a[i].length; j++) {
ret[j][a.length - i - 1] = a[i][j];
}
}
return ret;
}
static void print(int[][] array) {
for (int i = 0; i < array.length; i++) {
System.out.print("[");
for (int j = 0; j < array[i].length; j++) {
System.out.print(array[i][j]);
System.out.print(" ");
}
System.out.println("]");
}
}
Невозможно сделать это быстрее, чем O(n^2), для поворота на месте, потому что, если мы хотим повернуть матрицу, мы должны коснуться всех элементов n ^ 2 хотя бы один раз, независимо от того, какой алгоритм вы реализуете.
#!/usr/bin/env python
original = [ [1,2,3],
[4,5,6],
[7,8,9] ]
# Rotate matrix 90 degrees...
for i in map(None,*original[::-1]):
print str(i) + '\n'
Это вызывает поворот сторон на 90 градусов (т.е. 123 (верхняя сторона) теперь равна 741 (левая сторона).
Это решение Python работает, потому что оно использует нарезку с отрицательным шагом, чтобы изменить порядок строк (в результате чего 7 вверх)
original = [ [7,8,9],
[4,5,6],
[1,2,3] ]
Затем он использует map (вместе с подразумеваемой функцией тождественности, которая является результатом map с None в качестве первого аргумента) вместе с *, чтобы распаковать все элементы в последовательности, перегруппировать столбцы (т.е. первые элементы помещаются в кортеж вместе, 2-е элементы объединяются в кортеж и т. д.). Вы фактически получаете возвращенную следующую перегруппировку:
original = [[7,8,9],
[4,5,6],
[1,2,3]]
Вот это на Java:
public static void rotateInPlace(int[][] m) {
for(int layer = 0; layer < m.length/2; layer++){
int first = layer;
int last = m.length - 1 - first;
for(int i = first; i < last; i ++){
int offset = i - first;
int top = m[first][i];
m[first][i] = m[last - offset][first];
m[last - offset][first] = m[last][last - offset];
m[last][last - offset] = m[i][last];
m[i][last] = top;
}
}
}
public static void rotateMatrix(int[,] matrix)
{
//C#, to rotate an N*N matrix in place
int n = matrix.GetLength(0);
int layers = n / 2;
int temp, temp2;
for (int i = 0; i < layers; i++) // for a 5 * 5 matrix, layers will be 2, since at layer three there would be only one element, (2,2), and we do not need to rotate it with itself
{
int offset = 0;
while (offset < n - 2 * i - 1)
{
// top right <- top left
temp = matrix[i + offset, n - i - 1]; //top right value when offset is zero
matrix[i + offset, n - i - 1] = matrix[i, i + offset];
//bottom right <- top right
temp2 = matrix[n - i - 1, n - i - 1 - offset]; //bottom right value when offset is zero
matrix[n - i - 1, n - i - 1 - offset] = temp;
//bottom left <- bottom right
temp = matrix[n - i - 1 - offset, i];
matrix[n - i - 1 - offset, i] = temp2;
//top left <- bottom left
matrix[i, i + offset] = temp;
offset++;
}
}
}
Это переоцененный вопрос интервью в эти дни.
Мое предложение: не позволяйте интервьюеру путать вас с их сумасшедшим предложением о решении этой проблемы. Используйте доску, чтобы нарисовать индексирование входного массива, затем нарисуйте индексирование выходного массива. Образцы индексации столбцов до и после вращения показаны ниже:
30 --> 00
20 --> 01
10 --> 02
00 --> 03
31 --> 10
21 --> 11
11 --> 12
01 --> 13
Обратите внимание на шаблон чисел после поворота.
Ниже представлено чистое Java-решение. Это проверено, и это работает:
Input:
M A C P
B N L D
Y E T S
I W R Z
Output:
I Y B M
W E N A
R T L C
Z S D P
/**
* (c) @author "G A N MOHIM"
* Oct 3, 2015
* RotateArrayNintyDegree.java
*/
package rotatearray;
public class RotateArrayNintyDegree {
public char[][] rotateArrayNinetyDegree(char[][] input) {
int k; // k is used to generate index for output array
char[][] output = new char[input.length] [input[0].length];
for (int i = 0; i < input.length; i++) {
k = 0;
for (int j = input.length-1; j >= 0; j--) {
output[i][k] = input[j][i]; // note how i is used as column index, and j as row
k++;
}
}
return output;
}
public void printArray(char[][] charArray) {
for (int i = 0; i < charArray.length; i++) {
for (int j = 0; j < charArray[0].length; j++) {
System.out.print(charArray[i][j] + " ");
}
System.out.println();
}
}
public static void main(String[] args) {
char[][] input =
{ {'M', 'A', 'C', 'P'},
{'B', 'N', 'L', 'D'},
{'Y', 'E', 'T', 'S'},
{'I', 'W', 'R', 'Z'}
};
char[][] output = new char[input.length] [input[0].length];
RotateArrayNintyDegree rotationObj = new RotateArrayNintyDegree();
rotationObj.printArray(input);
System.out.println("\n");
output = rotationObj.rotateArrayNinetyDegree(input);
rotationObj.printArray(output);
}
}
Это простой C-код для поворота массива на 90 градусов. Надеюсь это поможет.
#include <stdio.h>
void main(){
int arr[3][4] = {85, 2, 85, 4,
85, 6, 7, 85,
9, 85, 11, 12};
int arr1[4][3];
int i = 0, j = 0;
for(i=0;i<4;i++){
int k = 2;//k = (number of columns in the new array arr1 - 1)
for(j=0;j<3;j++){
arr1[i][j]=arr[k][i];
k--;
}
}
int l, m;
for(l=0;l<4;l++){
for(m=0;m<3;m++){
printf("%d ", arr1[l][m]);
}
printf("\n");
}
}//end main
PHP:
array_unshift($array, null);
$array = call_user_func_array("array_map", $array);
Если вам нужно повернуть прямоугольный двумерный массив на 90 градусов, добавьте следующую строку до или после (в зависимости от нужного направления вращения) приведенного выше кода:
$array = array_reverse($array);
Решение JavaScript для поворота матрицы на 90 градусов на месте:
function rotateBy90(m) {
var length = m.length;
//for each layer of the matrix
for (var first = 0; first < length >> 1; first++) {
var last = length - 1 - first;
for (var i = first; i < last; i++) {
var top = m[first][i]; //store top
m[first][i] = m[last - i][first]; //top = left
m[last - i][first] = m[last][last - i]; //left = bottom
m[last][last - i] = m[i][last]; //bottom = right
m[i][last] = top; //right = top
}
}
return m;
}
Вот статический обобщенный метод C#, который сделает всю работу за вас. Переменные имеют правильное имя, поэтому вы можете легко уловить идею алгоритма.
private static T[,] Rotate180 <T> (T[,] matrix)
{
var height = matrix.GetLength (0);
var width = matrix.GetLength (1);
var answer = new T[height, width];
for (int y = 0; y < height / 2; y++)
{
int topY = y;
int bottomY = height - 1 - y;
for (int topX = 0; topX < width; topX++)
{
var bottomX = width - topX - 1;
answer[topY, topX] = matrix[bottomY, bottomX];
answer[bottomY, bottomX] = matrix[topY, topX];
}
}
if (height % 2 == 0)
return answer;
var centerY = height / 2;
for (int leftX = 0; leftX < Mathf.CeilToInt(width / 2f); leftX++)
{
var rightX = width - 1 - leftX;
answer[centerY, leftX] = matrix[centerY, rightX];
answer[centerY, rightX] = matrix[centerY, leftX];
}
return answer;
}
/* 90-degree clockwise:
temp_array = left_col
left_col = bottom_row
bottom_row = reverse(right_col)
reverse(right_col) = reverse(top_row)
reverse(top_row) = temp_array
*/
void RotateClockwise90(int ** arr, int lo, int hi) {
if (lo >= hi)
return;
for (int i=lo; i<hi; i++) {
int j = lo+hi-i;
int temp = arr[i][lo];
arr[i][lo] = arr[hi][i];
arr[hi][i] = arr[j][hi];
arr[j][hi] = arr[lo][j];
arr[lo][j] = temp;
}
RotateClockwise90(arr, lo+1, hi-1);
}
На яве
public class Matrix {
/* Author Shrikant Dande */
private static void showMatrix(int[][] arr,int rows,int col){
for(int i =0 ;i<rows;i++){
for(int j =0 ;j<col;j++){
System.out.print(arr[i][j]+" ");
}
System.out.println();
}
}
private static void rotateMatrix(int[][] arr,int rows,int col){
int[][] tempArr = new int[4][4];
for(int i =0 ;i<rows;i++){
for(int j =0 ;j<col;j++){
tempArr[i][j] = arr[rows-1-j][i];
System.out.print(tempArr[i][j]+" ");
}
System.out.println();
}
}
public static void main(String[] args) {
int[][] arr = { {1, 2, 3, 4},
{5, 6, 7, 8},
{9, 1, 2, 5},
{7, 4, 8, 9}};
int rows = 4,col = 4;
showMatrix(arr, rows, col);
System.out.println("------------------------------------------------");
rotateMatrix(arr, rows, col);
}
}
Мой пример кода C# для великого Алгоритма, отправленного @dimple:
/* Author: Dudi,
* http://www.tutorialspoint.com/compile_csharp_online.php?PID=0Bw_CjBb95KQMYm5qU3VjVGNuZFU */
using System.IO;
using System;
class Program
{
static void Main()
{
Console.WriteLine("Rotating this matrix by 90+ degree:");
int[,] values=new int[3,3]{{1,2,3}, {4,5,6}, {7,8,9}};
//int[,] values=new int[4,4]{{101,102,103, 104}, {105,106, 107,108}, {109, 110, 111, 112}, {113, 114, 115, 116}};
print2dArray(ref values);
transpose2dArray(ref values);
//print2dArray(ref values);
reverse2dArray(ref values);
Console.WriteLine("Output:");
print2dArray(ref values);
}
static void print2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen; m++){
Console.Write(matrix[n,m] +"\t");
}
Console.WriteLine();
}
Console.WriteLine();
}
static void transpose2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen; m++){
if(n>m){
int tmp = matrix[n,m];
matrix[n,m] = matrix[m,n];
matrix[m,n] = tmp;
}
}
}
}
static void reverse2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen/2; m++){
int tmp = matrix[n,m];
matrix[n,m] = matrix[n, mLen-1-m];
matrix[n,mLen-1-m] = tmp;
}
}
}
}
/*
Rotating this matrix by 90+ degree:
1 2 3
4 5 6
7 8 9
Output:
7 4 1
8 5 2
9 6 3
*/
На месте поворота на 90 градусов по часовой стрелке с использованием вектора векторов.
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
//Rotate a Matrix by 90 degrees
void rotateMatrix(vector<vector<int> > &matrix){
int n=matrix.size();
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
swap(matrix[i][j],matrix[j][i]);
}
}
for(int i=0;i<n;i++){
reverse(matrix[i].begin(),matrix[i].end());
}
}
int main(){
int n;
cout<<"enter the size of the matrix:"<<endl;
while (cin >> n) {
vector< vector<int> > m;
cout<<"enter the elements"<<endl;
for (int i = 0; i < n; i++) {
m.push_back(vector<int>(n));
for (int j = 0; j < n; j++)
scanf("%d", &m[i][j]);
}
cout<<"the rotated matrix is:"<<endl;
rotateMatrix(m);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
cout << m[i][j] << ' ';
cout << endl;
}
}
return 0;
}