Модель Tensorflow CNN всегда предсказывает один и тот же класс

Я пытался разработать модель CNN для классификации изображений. Я новичок в tenorflow и получаю помощь от следующих книг

  • Learning.TensorFlow.A.Guide.to.Building.Deep.Learning.Systems

  • TensorFlow для машинного интеллекта Сэм Абрахамс

Последние несколько недель я работал над созданием хорошей модели, но всегда получал один и тот же прогноз. Я пробовал много разных архитектур, но не повезло!

В последнее время я решил протестировать свою модель с набором данных CIFAR-10 и использовать точно такую ​​же модель, которая описана в книге Learning Tensorflow. Но результат был одинаковым (один и тот же класс для каждого изображения) даже после тренировки по 50К шагов.

Вот изюминка моей модели и кода.

1.) Загруженные наборы изображений CIFAR-10, преобразованные в файлы tfrecord с метками (метки - строки для каждой категории CIFAR-10 в файле tfrecord), каждый для обучения и тестирования.

2) Чтение изображений из файла tfrecord и генерация случайной партии в случайном порядке размером 100.

3) Преобразование метки из строки в тип integer32 от 0 до 9 для каждой категории

4) Передайте обучающие и тестовые пакеты в сеть и получите выходные данные размера [batch_size, num_class].

5) Обучите модель с использованием оптимизатора Adam и функции кросс-энтропийной потери softmax (пробовал также оптимизатор градиента)

7) оценить модель для тестовых партий до и после тренировки.

8) Получение одинакового прогноза для всего набора данных (но разное при каждом запуске кода, чтобы повторить попытку)

Что-то не так я здесь делаю? Буду признателен, если кто-нибудь поможет мне с этой проблемой.

Примечание. Мой подход к преобразованию изображений и меток в tfrecord может быть необычным, но, поверьте мне, я пришел к этой идее из книг, которые я упоминал ранее.

Мой код для проблемы:

import tensorflow as tf
import numpy as np
import _datetime as dt
import PIL

# The glob module allows directory listing
import glob
import random

from itertools import groupby
from collections import defaultdict

H , W  = 32 , 32        # Height and weight of the image
C = 3                   # Number of channels


sessInt = tf.InteractiveSession()

# Read file and return the batches of the input data
def get_Batches_From_TFrecord(tf_record_filenames_list, batch_size):
    # Match and load all the tfrecords found in the specified directory
    tf_record_filename_queue = tf.train.string_input_producer(tf_record_filenames_list)

    # It may have more than one example in them.
    tf_record_reader = tf.TFRecordReader()
    tf_image_name, tf_record_serialized = tf_record_reader.read(tf_record_filename_queue)

    # The label and image are stored as bytes but could be stored as int64 or float64 values in a
    # serialized tf.Example protobuf.
    tf_record_features = tf.parse_single_example(tf_record_serialized,
                                                 features={'label': tf.FixedLenFeature([], tf.string),
                                                           'image': tf.FixedLenFeature([], tf.string), })

    # Using tf.uint8 because all of the channel information is between 0-255
    tf_record_image = tf.decode_raw(tf_record_features['image'], tf.uint8)

    try:
        # Reshape the image to look like the input image
        tf_record_image = tf.reshape(tf_record_image, [H, W, C])

    except:
        print(tf_image_name)

    tf_record_label = tf.cast(tf_record_features['label'], tf.string)

    '''
    #Check the image and label

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sessInt, coord=coord)

    label = tf_record_label.eval().decode()
    print(label)

    image = PIL.Image.fromarray(tf_record_image.eval())
    image.show()

    coord.request_stop()
    coord.join(threads)
    '''

    # creating a batch to feed the data

    min_after_dequeue = 10 * batch_size
    capacity = min_after_dequeue + 5 * batch_size

    # Shuffle examples while feeding in the queue
    image_batch, label_batch = tf.train.shuffle_batch([tf_record_image, tf_record_label], batch_size=batch_size,
                                                      capacity=capacity, min_after_dequeue=min_after_dequeue)

    # Sequential feed in the examples in the queue (Don't shuffle)
    # image_batch, label_batch = tf.train.batch([tf_record_image, tf_record_label], batch_size=batch_size, capacity=capacity)

    # Converting the images to a float to match the expected input to convolution2d
    float_image_batch = tf.image.convert_image_dtype(image_batch, tf.float32)

    string_label_batch = label_batch

    return float_image_batch, string_label_batch

#Count the number of images in the tfrecord file

def number_of_records(tfrecord_file_name):
    count = 0
    record_iterator = tf.python_io.tf_record_iterator(path = tfrecord_file_name)
    for record in record_iterator:
        count+=1

    return count

def get_num_of_samples(tfrecords_list):
    total_samples = 0
    for tfrecord in tfrecords_list:
        total_samples += number_of_records(tfrecord)

    return total_samples

# Provide the input tfrecord names in a list
train_filenames = ["./TFRecords/cifar_train.tfrecord"]
test_filename = ["./TFRecords/cifar_test.tfrecord"]

num_train_samples = get_num_of_samples(train_filenames)
num_test_samples = get_num_of_samples(test_filename)


print("Number of Training samples: ", num_train_samples)
print("Number of Test samples: ", num_test_samples)


''' 
IMP Note : (Batch_size * Training_Steps) should be at least greater than (2*Number_of_samples) for shuffling of batches

'''
train_batch_size = 100

# Total number of batches for input records
# Note - Num of samples in the tfrecord file can be determined by the tfrecord iterator.

# Batch size for test samples
test_batch_size = 50

train_image_batch, train_label_batch = get_Batches_From_TFrecord(train_filenames, train_batch_size)
test_image_batch, test_label_batch = get_Batches_From_TFrecord(test_filename, test_batch_size)


#  Definition of the convolution network which returns a single neuron for each input image in the batch


# Define a placeholder for keep probability in dropout
# (Dropout should only use while training, for testing dropout should be always 1.0)

fc_prob = tf.placeholder(tf.float32)
conv_prob = tf.placeholder(tf.float32)

#Helper function to add learned filters(images) into tensorboard summary - for a random input in the batch 
def add_filter_summary(name, filter_tensor):

    rand_idx = random.randint(0,filter_tensor.get_shape()[0]-1)  #Choose any random number from[0,batch_size)

    #dispay_filter = filter_tensor[random.randint(0,filter_tensor.get_shape()[3])]

    dispay_filter = filter_tensor[5]        #keeping the index fix for consistency in visualization

    with tf.name_scope("Filter_Summaries"):
        img_summary = tf.summary.image(name, tf.reshape(dispay_filter,[-1 , filter_tensor.get_shape()[1],filter_tensor.get_shape()[1],1] ), max_outputs = 500)


# Helper functions for the network

def weight_initializer(shape):
    weights = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(weights)


def bias_initializer(shape):
    biases = tf.constant(0.1, shape=shape)
    return tf.Variable(biases)


def conv2d(input, weights, stride):
    return tf.nn.conv2d(input, filter=weights, strides=[1, stride, stride, 1], padding="SAME")


def pool_layer(input, window_size=2 , stride=2):
    return tf.nn.max_pool(input, ksize=[1, window_size, window_size, 1], strides=[1, stride, stride, 1], padding='VALID')


# This is the actual layer we will use.
# Linear convolution as defined in conv2d, with a bias,
# followed by the ReLU nonlinearity.
def conv_layer(input, filter_shape , stride=1):
    W = weight_initializer(filter_shape)
    b = bias_initializer([filter_shape[3]])
    return tf.nn.relu(conv2d(input, W, stride) + b)


# A standard full layer with a bias. Notice that here we didn’t add the ReLU.
# This allows us to use the same layer for the final output,
# where we don’t need the nonlinear part.
def full_layer(input, out_size):
    in_size = int(input.get_shape()[1])
    W = weight_initializer([in_size, out_size])
    b = bias_initializer([out_size])
    return tf.matmul(input, W) + b

## Model fro the book learning tensorflow - for CIFAR data

def conv_network(image_batch, batch_size):
    # Now create the model which returns the output neurons (eequals to the number of labels)
    # as a final fully connecetd layer output. Which we can use as input to the softmax classifier

    C1 , C2 , C3 = 30 , 50, 80      # Number of output features for each convolution layer
    F1 = 500                        # Number of output neuron for FC1 layer

    #Add original image to tensorboard summary

    add_filter_summary("Original" , image_batch)

    # First convolutaion layer with 5x5 filter size and 32 filters
    conv1 = conv_layer(image_batch, filter_shape=[3, 3, C, C1])
    pool1 = pool_layer(conv1, window_size=2)

    pool1 = tf.nn.dropout(pool1, keep_prob=conv_prob)

    add_filter_summary("conv1" , pool1)

    # Second convolutaion layer with 5x5 filter_size and 64 filters
    conv2 = conv_layer(pool1, filter_shape=[5, 5, C1, C2])
    pool2 = pool_layer(conv2, 2)
    pool2 = tf.nn.dropout(pool2, keep_prob=conv_prob)

    add_filter_summary("conv2" , pool2)

    # Third convolution layer 

    conv3 = conv_layer(pool2, filter_shape=[5, 5, C2, C3])

    # Since at this point the feature maps are of size 8×8 (following the first two poolings
    # that each reduced the 32×32 pictures by half on each axis).
    # This last pool layer pools each of the feature maps and keeps only the maximal value. 
    # The number of feature maps at the third block was set to 80, 
    # so at that point (following the max pooling) the representation is reduced to only 80 numbers


    pool3 = pool_layer(conv3, window_size = 8 , stride=8)
    pool3 = tf.nn.dropout(pool3, keep_prob=conv_prob)

    add_filter_summary("conv3" , pool3)

    # Reshape the output to feed to the FC layer
    flatterned_layer = tf.reshape(pool3, [batch_size,
                                          -1])  # -1 is to specify to use all the dimensions remaining in the input (other than batch_size).reshape(input , )

    fc1 = tf.nn.relu(full_layer(flatterned_layer, F1))

    full1_drop = tf.nn.dropout(fc1, keep_prob=fc_prob)

    # Fully connected layer 2 (output layer)
    final_Output = full_layer(full1_drop, 10)

    return final_Output, tf.summary.merge_all()

# Now that architecture is created , next step is to create the classification model
# (to predict the output class of the input data)
# Here we have used Logistic regression (Sigmoid function) to predict the output because we have only rwo class.
# For multiple class problem - softmax is the best prediction function


# Prepare the inputs to the input
Train_X , img_summary = conv_network(train_image_batch, train_batch_size)
Test_X , _ = conv_network(test_image_batch, test_batch_size)

# Generate 0 based index for labels
Train_Y = tf.to_int32(tf.argmax(
    tf.to_int32(tf.stack([tf.equal(train_label_batch, ["airplane"]), tf.equal(train_label_batch, ["automobile"]), 
                          tf.equal(train_label_batch, ["bird"]),tf.equal(train_label_batch, ["cat"]),
                          tf.equal(train_label_batch, ["deer"]),tf.equal(train_label_batch, ["dog"]),
                          tf.equal(train_label_batch, ["frog"]),tf.equal(train_label_batch, ["horse"]),
                          tf.equal(train_label_batch, ["ship"]), tf.equal(train_label_batch, ["truck"]) ])), 0))

Test_Y = tf.to_int32(tf.argmax(
        tf.to_int32(tf.stack([tf.equal(test_label_batch, ["airplane"]), tf.equal(test_label_batch, ["automobile"]), 
                          tf.equal(test_label_batch, ["bird"]),tf.equal(test_label_batch, ["cat"]),
                          tf.equal(test_label_batch, ["deer"]),tf.equal(test_label_batch, ["dog"]),
                          tf.equal(test_label_batch, ["frog"]),tf.equal(test_label_batch, ["horse"]),
                          tf.equal(test_label_batch, ["ship"]), tf.equal(test_label_batch, ["truck"]) ])), 0))


# Y =  tf.reshape(float_label_batch, X.get_shape())


# compute inference model over data X and return the result
# (using sigmoid function - as this function is the best to predict two class output)
# (For multiclass problem - Softmax is the bset prediction function)
def inference(X):
    return tf.nn.softmax(X)


# compute loss over training data X and expected outputs Y
# Cross entropy function is the best suited for loss calculation (Than the squared error function)

# Get the second column of the input to get only the features

def loss(X, Y):
    return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=X, labels=Y))


# train / adjust model parameters according to computed total loss (using gradient descent)
def train(total_loss, learning_rate):
    return tf.train.AdamOptimizer(learning_rate).minimize(total_loss)


# evaluate the resulting trained model with dropout probability (Ideally 1.0 for testing)
def evaluate(sess, X, Y, dropout_prob):
    # predicted = tf.cast(inference(X) > 0.5 , tf.float32)

    #print("\nNetwork output:")
    #print(sess.run(inference(X) , feed_dict={conv_prob:1.0 , fc_prob:1.0}))

    # Inference contains the predicted probability of each class for each input image.
    # The class having higher probability is the prediction of the network. y_pred_cls = tf.argmax(y_pred, dimension=1)
    predicted = tf.cast(tf.argmax(X, 1), tf.int32)

    #print("\npredicted labels:")
    #print(sess.run(predicted , feed_dict={conv_prob:1.0 , fc_prob:1.0}))
    #print("\nTrue Labels:")
    #print(sess.run(Y , feed_dict={conv_prob:1.0 , fc_prob:1.0}))

    batch_accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), tf.float32))

    # calculate the mean of the accuracies of the each batch (iteration)
    # No. of iteration Iteration should cover the (test_batch_size * num_of_iteration ) >= (2* num_of_test_samples ) condition
    total_accuracy = np.mean([sess.run(batch_accuracy, feed_dict={conv_prob:1.0 , fc_prob:1.0}) for i in range(250)])

    print("Accuracy of the model(in %): {:.4f} ".format(100 * total_accuracy))

# create a saver class to save the training checkpoints
saver = tf.train.Saver(max_to_keep=10)

# Create tensorboard sumamry for loss function
with tf.name_scope("summaries"):
    loss_summary = tf.summary.scalar("loss", loss(Train_X, Train_Y))

#merged = tf.summary.merge_all()

# Launch the graph in a session, setup boilerplate
with tf.Session() as sess:
    log_writer = tf.summary.FileWriter('./logs', sess.graph)

    total_loss = loss(Train_X, Train_Y)

    train_op = train(total_loss, 0.001)

    #Initialise all variables after defining all variables
    tf.global_variables_initializer().run()

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    print(sess.run(Train_Y))
    print(sess.run(Test_Y))

    evaluate(sess, Test_X, Test_Y,1.0)


    # actual training loop------------------------------------------------------
    training_steps = 50000
    print("\nStarting to train model with", str(training_steps), " steps...")
    to1 = dt.datetime.now()

    for step in range(1, training_steps + 1):

        # print(sess.run(train_label_batch))
        sess.run([train_op], feed_dict={fc_prob: 0.5 , conv_prob:0.8})  # Pass the dropout value for training batch to the placeholder

        # for debugging and learning purposes, see how the loss gets decremented thru training steps

        if step % 100 == 0:
            # print("\n")
            # print(sess.run(train_label_batch))
            loss_summaries, img_summaries , Tloss = sess.run([loss_summary, img_summary, total_loss],
                                      feed_dict={fc_prob: 0.5 , conv_prob:0.8})  # evaluate total loss to add it in summary object
            log_writer.add_summary(loss_summaries, step)  # add summary for each step
            log_writer.add_summary(img_summaries, step)
            print("Step:", step, " , loss: ", Tloss)

        if step%2000 == 0:
            saver.save(sess, "./Models/BookLT_CIFAR", global_step=step, latest_filename="model_chkpoint")
            print("\n")
            evaluate(sess, Test_X, Test_Y,1.0)

    saver.save(sess, "./Models/BookLT_CIFAR", global_step=step, latest_filename="model_chkpoint")
    to2 = dt.datetime.now()
    print("\nTotal Trainig time Elapsed: ", str(to2 - to1))


    # once the training is complete, evaluate the model with test (validation set)-------------------------------------------

    # Restore the model file and perform the testing
    #saver.restore(sess, "./Models/BookLT3_CIFAR-15000")

    print("\nPost Training....")

    # Performs Evaluation of model  on batches of test samples
    # In order to evaluate entire test set ,  number of iteration should be chosen such that ,
    # (test_batch_size * num_of_iteration ) >= (2* num_of_test_samples )

    evaluate(sess, Test_X, Test_Y,1.0)  # Evaluate multiple batch of test data set (randomly chosen by shuffle train batch queue)
    evaluate(sess, Test_X, Test_Y,1.0)
    evaluate(sess, Test_X, Test_Y,1.0)

    coord.request_stop()
    coord.join(threads)
    sess.close()
  • Вот скриншот моего результата Pre подготовки:

  • Вот скриншот результата во время тренировки:

  • Вот скриншот результата тренировки Post

1 ответ

Я не запускал код, чтобы убедиться, что это единственная проблема, но здесь есть одна важная проблема. При классификации вы должны использовать одну горячую кодировку для ваших меток. Это означает, что если у вас есть 3 класса, вы хотите, чтобы ваши ярлыки были [1, 0, 0] для класса 1, [0, 1, 0] для класса 2, [0, 0, 1] для класса 3. Ваш подход к использованию 1, 2 и 3 в качестве меток приводит к различным проблемам. Например, сеть штрафуется больше за прогнозирование класса 1 по сравнению с прогнозированием класса 2 для изображения из класса 3. Функции TensorFlow, такие как tf.nn.softmax_cross_entropy_with_logits работать с такими представлениями.

Вот основной пример правильного использования меток one_hot для вычисления потерь: https://github.com/tensorflow/tensorflow/blob/r1.4/tensorflow/examples/tutorials/mnist/mnist_softmax.py

Вот как создается метка one_hot для цифр mnist: https://github.com/tensorflow/tensorflow/blob/438604fc885208ee05f9eef2d0f2c630e1360a83/tensorflow/contrib/learn/python/learn/datasets/mnist.py

Другие вопросы по тегам